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APPLICATIONS OF A CONDITIONAL EVENT ALGEBRA TO DATA FUSION

Dr. I.R. Goodman

Command & Control Department
Code 421

Naval Ocean Systems Center
San Diego, California 92152

Abstract

This paper, in the spirit of last year's article, N 0 D E
is a contribution toward a unified theory of data fus- ---- 0- OETECTION-HYPOTHESES +DATA
ion as an integral part of a more general C3 theory. A NOINALS IPROCESS FORMULATION FUSION
computationally feasible and mathematically sound pro- SIGAL PROCESS, ?PROCESS ..DECISION
cedure If proposed here for the combination of dispar- POSSIBLE ALGORITHM PROCESS
ate information, prior to, and compatible with, ordin- CONSULTATIONSSELECTION P

aey conditional probability evaluations. This is based " NUWITH OTHERN ?PROCESS

directly upon a new breakthrough concerning the exten- NODE
sion of classical probability logic to a full condit- N SRESPONSEional logic. ~-POERCNO

1. DATA FUSION ND C PROCESSES NODE 1'

1.1.Qualitatl e aspects. Figure 2. Internal "bynamics of C3 Processes:Simplfie.

Pr ously, in (1] a general approac to data The basic evolution cycle of a typical node
fusion outlined within the context of C processes. is described In the following figure:

f As a brief review (see also [2],[31) and a modi-
ficion of past efforts, the following sbtains: S NODE STATE NNODE STATE

The atior has been considering qjprocesses -SIGNAL;.iN PRIOR TC.-N JUST --- N+* JUST
from the eric viewpoint of interactinj nodes of (SIR-) S ENTERINC FOLLOWING AFTER FINAL
decIsion nakers,or complexes of such. These interact- RECEPTION PROCESSING,
ions or signals" may be actual vectors of signals con- MEDIUM OF S,UP TC SENDING OUT
taining voluntary or leaked information from other POSSIBLE RESPONSE R+" c
nodes, friendly or hostile, or they may represent RESPONSE DETECTION u_____
fired weapons, for example. The nodes are relative in .E - - '

size, but whether they represent one or a group of in-dividuals. they possess certain common characteristics~ r  V)n -f...

These include a decision structure centering around eND' l IGA
data fusion which contains detection, hypotheses form- Figure 3. Basic Evolution Cycle of a Node Due to
Ing mechanisms, algorithm selections, and responses "Signal" Processing and Response.
as an output. The nodes also are represented by cor-
responding state vectors containing all pertinent des- The components of a typical node state are as
criptors, such as equations of motion and location, in Table 1:
number of individuals or supplies and their relative THREAT LEVEL
importance, damage levels, threat levels, and esti-
nates and other knowledge of other node states, friend- NODE STATE # or TROOPS
ly or adversary. NODE P OF WP,1fN11E PROPER # OF W4P,II

Schematically, the following simplified sltua- IMPORTANCE
tions hold as Figuresl and 2 show: SUPPLY LEVEL

EQ. OF MO.
RESPONSE-WEAPON FIRING < STATE DAMAGE LEVEL

NO EDIUM NODE I
I-IMEDIUS AESPONSE= KNOWLEOGE ETMTSO

S - (nSEND SIG- VECTOR -PART OTHER NODE

IDSTORTING U NAL FOR SAE
1)- MDIUM - MEDIUM\ INFO. Table I. Components of C3 Node States.

NODE 3
"M-fiAND 1.2. Quantitative aspects.| " I XEDIU JNODE 5

T k 2 (PLANES) Te next step following the qualitative scoping-
OD( M"BI G out of C processes, including data fusion, is the de-

- OO LIO *, IU ,iW'io I termination of the corresponding quantitative descript-
D . CO N -R o ion. In effect, this entails choosing both an appropri-

SNODE 6 ate relational syntax and a numerical/semantic evalua-
3 '(SHIPS-COMMANO 3. tion system. Such a pair is called an algebraic logic

Figure 1. External Dynamics of C3 Procresses:Mol ifiedi description pair (ALOP). The reader ismost likely,
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familiar with the most common ALDP: probability logic GENERAL AXIOMS: FOR ALL iaB,y, AND FOR * =&,v
(PL) where the appropriate synta. is the structure of IMPLICATIVE/CONDITIONAL STRUCTURE FOR &,v:
a boolean (or more strongly, sigma-) algebra R of events. (al) ( a me) " o&BIB)
Here, the usual set or logical/propositional operations (o&-y) (oJ&y)&(Oly),
hold: unions(u) or disjunctions(v), intersections(n) or (o*slY) (oy)*(Biy)
conjunctions(&), complements cr negations (()'), rAter- v a • ,
ial fwplicatlons ((-)'u(-) or (.)'v(--), commonly de- ocOOM(.)
noted by.-,-), and material double implication or mater-
ial or logical equivalence (( &( -- ),commonly SUFFICIENCY AXIOMS: FOR R I (N&N"&N:=&..&N ):
denoted by.*->,s ). For purposes of simplicity and be- (R'IN+"&) , (R++IN +)

cause the author has propositional logic and its ex- ++ +
tensions in mind, the common notation used throughout ++IR'& N+& ) (N+ IR &,N+)
this paper will be the logical/propositional inter- (N+IS & R'& ) iN'iS & N)
pretations- but these can all be immediately convert-
ed to the set notation counterparts, where required. (SIR-& ) (SIR-)
The corresponding semantic or numerical evaluation for Table 2b. Formal Langudge Description of a
PL is of course simply the choice of a particular Node Evolution:.Part 2.
(joint) probability measure (either finitely additive
or countably additive, if need be) p:R ( [0,13, the
last symbol denoting the unit'interval. (See (1] and The symbols in Table 2 can be interpreted as
[4] for background.) follows,as given in Table 3:

As pointed out in (1] and elsewhere ((41,Chpts I N - NODE STATE VECTOR ,,T - NODE STATE STRUCTURE
1, 2.2.1), other processes are also involved in estab- R - RESPONSE VEGTOR , S "SIGNAL' VECTOR
lishing as evaluation of a situation such as that en- ( )+ * POSITIVE TIME SHIFT T NEW PHASE
tailing C and data fusion processes, besides the

choice of ALOP. For example, mental imaging and cogni- ( ) - NEGATIVE TIME SHIFT TO OLD PHASE
tive processes play an important role,as do natural ( )0 INITIALIZATION OF STATE (TIME441SE)
language formulations, semiotics, and full formal Ian- ( ) " IMPLICATION OR CONDITIONING
guage / formal theory. For simplicity only the latter
will be considered in any detail prior to the choice & = AND , v - OR , ( )' NOT (EXPLAINED EARLIER)
of ALDP. This sequence of knowledge flow in converting DOM - DOMAIN OF POSSIBLE VALUES
any qualitative description into a quantitative one c - SET MEMBERSHIP RELATION AS USED BEFORE
can be summarized in the diagram In Figure 4: Table 3. Inter retations of the Formal Language

Q U A L I T A T I V E P H A S E for C3 Node Evolution.

PROBLEM/SITUATION -- COGNITION-NATURAL LANGUAGE
(C3 PROCESSES,E.G.) FORMULATION Note that N and T above can be partitioned into

subvectors as e.g.:

Q UA N T I T.A T I V 'E "P H A S .E 'I .......... N - (JWPI , it.P2 , iWP3 , iTROOP,EQMO,INFO) (1.1)

ALGEBRAIC LOGIC FULL SEMIOTICS/ T - (DET,ALG,HYP,FUS,CONS,DEC) (1.2)
DESCRIPTION PAIR: 4--FORMAL i-- ST.IHCS OF
(SYNTAX,SEMANTICS) LANGUAGE/ SYMBOLS, where DET-detection (or not), ALG-algorithm selection,

FORMAL DICTIONARIES NYP-hypotheses formulation, FUS-data fusion,DEC-decil-
THEORY ion, etc. One can add the constraint (1.3) to the ax-

ioms in Table 2b:
Figure 4. Knowledge Flow in Describing Situations. (R+IT+& N+) • (R+4 1DEC+& N+). (1.3)

Examples of ALOP's include: Using similar sufficiency assumptions, implicative

probability logic(PL):(boolean algebra,prob. measure) chaining In Table 2b shows that

fuzzy logic(FL):(browerian lattice, possibility meas.) (T+IN +) - (DEC+ICONS +&FUS +&HYP &ALG
+ &DET+&N+)

Dempster-Shafer logic(DSL):(boolean algebra,belief ms) &(CONS+IFUS4&HYP4 &ALG &DET+&N)
classical logic (CL): (boolean algebra,O-I valued ms.) 4

(See (1] or [43 again for further details.) &US+) HYP+&ALG+ &DET+&N+)

In the case of C3 processes, an improved full &(HYP+IALG + &DET +&N+ )

formal language description has seen developed for the +(ALGICET
4 4

)&(CET IN (1.4)
dynamic evolution'of a typical C node state vector
[5], replacing previous efforts in (1]-[3]. The next Finally, applying the usual deduction procedure
section describes this. to the axioms given in Table 2. yields the following

theorem (l.l)describlng the dynamic evolution of a
1.3 Fj3! formal language description/ theory for noae state in formal language terms:

VFnod-eevolutions. Theorem 1.1 (See (53.)

In brief, the full formal language description Under the assumptions in Table 2:
is summarized in the following tables: ((N++ &N4  N) N

EqUALIlY SYMBOL: +NN ~cDN R &RI &NI)
CONSTANTS: n, e DOM(R+ ((.S
DUMMY VARIABLES: a,$,y ( DOM(N)
S'ECIFIC VARIABLES: N,R,S; T IMPLICIT IN N where +

OPERATORS: . (~ I ), &. v, (H WIN) (HI&)Rt), (1.6)

GENERAL AXIOMS: FOR ALL a..y, AND FOR * &,v: RcOOM(R)
RING STRUCTURE FOR &,v: (R IN). 4V + ((R IT &N)&(T +IN)), (1.7)
0*8 B*0 , a*(e*y) - (atB)*y , T cOOM(T )
o&O 0, O&C - a - avo, avfl , (N+IR'&N) V ((N+IS&N)&(SR')) , (1.8)

o&(Svy) ( &8)V(&). ScDOM(S)

Table 2a. F3rmal Language Description of a and H++  V .9
C Node Evolution: Part 1. N V ((N IN)& N) .

8cOOM(0)
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Thus, using the interpretation in Table 3, qom- pression
patible with Figure 3, Q - ((alb) & (cld)) v (elf), (2.3)

(R++IT+&N+) - response following processing, (1.10) where now

R+&N+) - new node state due to its sending a(x) enemy will move up about x troops to-
out response 1.1) morrow x,50,100,150.

(T+IN ) - processing data, (1.12) b - b(y) - it will y tomorrow; y-be clear, snow,rain.
++ c - c(z) - enemy will use Pass z to approach -is;

full cycle of node change due toIV.
signals" received, over all poss- d - d(r,s)- morale of enemy node 17 is at level r

etc. ible processing, and responses. (1.13) and number of their troops left Is s
Thus, if PL were chosen as the ALOP, assuming r-very low, low, medium,high, very high,

only stochastic relations are involved in C3 variables, s-0,100,200,300.
then TheoremU reduces to-the more familiar form e - e~w) - enemy will w tomorrow; w-surrender,not

++ ++ + ++ + + - .+surrender.
P(N+IN)o f P(NIR N+)'P(R+IN+)'P(N+IN)dRdN. f - f(q) - enemy overall damage level is qI R 1OM(R1 )\ (1.14) q-O,l,2,.. 10.

(NDOM(w ,/ Of course, if the antecedents in (2.2) or (2.3)
were all the same, then no real problem would arise,Or, if FL were chosen as thq ALDP, assuming only fuzzy since for example it is readily justified that for any

relations are inVolved in CJ variables, then Theoremll choice of ALDP certainly for PL that
becomes under semantic evaluation

poss(N ++IN)- max( min(poss(N++ R++N) ,poss (R++N+), Q ((ald) & (cId)) v (eld)
over all \ poss(NTIN))), (qa&c)vcld) , (2.4)
R' DOM(R+)J (1.15) even though normally one does not talk about such

\N+cDOM(N+) ) measure-free entitlesupto now). Indeed, since the goal
One could also choose combinations of PL and FL or is the evaluation of Q, for PL, choosing a probability
other ALDP's In the evaluation aspect. (Again, see (41) measure p over all the relevant events, one would us-

In turn, utilizing the outputs in Theorem 1.1, ually evaluate Q as simply

together with'the choice of ALDP, it is clear that the p(q) - p(((ajd) & (cId)) v (ejd))
evolution of node states depend-on the determination " pt(a&c)ve)Jd)
of the relative primitive relations given as suffici- p(((a&c)ve))&d)/p(d), (2.5)
ency axioms in Table 2b. Calling each possible combin-
ation of such relations for each C3 side J,friendly etc., assuming p(d)>O.
(J-l) or adversary (J-2), PRIMJ , one can establish But the pofnt'f the above examples in (2.2)

and (2.3) is that the antecedents in the conditionala loss L(PRIM1,PRIM 2 ) based directly on Theorem 1.1, forms are not in general identical! What to do?

thereby establishing a zero sum two"person"C decision Contrary to popular belief [author's note: this
game and then procede to analyze the game for values, author and his colleague Prof. H.T. Nguyen, Math. Dept.
least favorable strategies, bayes decisions, minimax New Mexico State University, Las Cruces, have undertak-
strategies, etc. (See (5] for further details, where en an extensive informal survey of the probability
a multidimensional gaussian linear conditional struc- community- both applied and theoretical-resulting in
ture is Impo~ed upon the relations yielding feasible the following conclusions - see also (7] ]: there is
computationrl forms.) no systematic and mathematically sound procedure for

computing p(Q) (or Q, for that matter) in either (2.2)Throughout all of the above calculations, data or (2.3), or any similar probleml
fusion plays a central role (see again (1.4) and (1.7)
where the specific quantitative relations dependinS Indeed, there do exist "folk" remedies to this
upon data fusion are shown). In the next section, mo- situation which roughly speaking reduce to two ap-
tivation is developed for a systematic approach to proaches as presented in the next sections.
the fusion proper aspect for disparate information ar- 2.2 _____ A: Ieictnfod onriving in conditional form. 2.2 p.oacA: Identification f. conditioninq

with material Implication.

2. NEED FOR A CONDITIONAL EVENT ALGEBRA IN In this approach, one interprets (alb) as b4 a,
EVALUATING DATA FUSION i.e., for any a,b,events, d

2.1 Introduction. (aJb) - b.a - b'va = b!v(ab) (2.6)

is assumed to be valid so that by the principle ofNoting that many of the relations In Tble 2b substitution relative to equality, for any (suitable)
and subsequent equations are in conditioned form, con probability measure p, assuming the identity for p(b)>Osider in particular the basic data fusion factor Ind

(1.4) d p((alb)) - p(alb) -p(a&b)/p(b), (2.7)
Q ' (FUS+IHYP +& ALG + & DET+ A N+). (2.1) ona has immediately from (2.6)

noting that the incoming "signal" S Is present through p(ajb) - ptb-a)
the change of N to N appearing in the antecedent. Fix - p(b'%+&b))-l-p(b)+p(a&b). (2,8)
throughout the discussionin the antecedent for Qan etc.
arbitrary combination of possible domain values for
HYP ,ALG ,DET+ , and N+ and hence S,up to some variabil- Thus using this approach, (2.2) becomes:
ity. Consider then the two following simplified ex- p(q)-p((b-)na) v (c-,a))-p(b'vavc'va)
'amples: -p((b&c)'va)-p((b&c)4a)

Q - (alb) v (aic) , (2.2) -p(alb&c). (2.9)

where However, there is just one flaw in the above
a - ship target possible position area updated, reasoning: One cannot make the Identification in gener-
b - track history 1 is the assumed assignment al in the left handside of (2.6). Indeed, it is rather

(possibly in error) to the target, easy to show (yet surprisingly few are aware of the
c - track history 2 is the assumed assignment Inequality below- see e.g. the discussion in (7], sect.

(possibly in error) to the target . 1.8):

Or, perhaps, Q represents intelligence informa- % p(a b)
tion to be fused by evaluating the truth of the ex- pab , (2.10)

181



where in general strict inequality holds for the last, Thus one is lead to question whether any remedy
two z. Furthermore, (2.6) Is not even a good approxi- exists for this situation: Can a calculus of measure-
mationsince it is readily verified for b with p(b) free conditional events be developed which is both
small that one can choose a and b such that p(b- ,a) is compatible with ordinary conditional probability eval-
close to one,while p(alb) is close to zero. This un- uations and is also unambiguous and feasible To imple-
fortunate situation is a special ctase of the "Stalnaker ment,as well as being based upon sound, non-ad hoc
Thesis" problem and is considered in detail in [6] and mathematical principles? Certainly, all evaluation of
(7). section 1. In fact the following apparently not- fused data, and hence evaludtions for the overall C3
well-known result has benown: problem, must depend, in effect, on the outcome of thl.
Theorem 2.1. (P. Calabrese (8], section 1.2) question.

It is the contention here that the answer to theLet R be a boolean algebra of events with the above question is definitely in the affirmative. In
usual operations discussed previously. Let p be any this paper in section 3 an outline of a theory for de-
non-degenerate probability measure over R,i.e. veloping such a calculus of operattbns and related
p:R (0,1]. Then, there is no binary boolean function issues is presented. This is carried out for not only

S-. R such that for all a-6 c R , with p(b)>O, the purpose of keeping this paper as self-contained

p(alb) - p(f(a,b)). (2.11) as possible, but also because of the desire to dis-
* seminate these novel and universally applicable re-

sults to as wide an audience as possible, wuthin aThe result is further extended In one direction short time period. For earlier efforts in this direct-by the following result: ion, see (6]. In (7]( in the process of being submitted

Theorem 2.2. ( Goodman & Nguyen [7], Theorem 2.7) for publication) the full theory, with all proofs, is
exhibited.

Let R be any finite boolean algebra of events. One consequenie of the calculus of conditional
Then, there is no binary 'unction f of any knd,f:R1)hl , events is that the evaluations for Q in (2.2) and (2.3)
such that for all a,b a R, with p(b)>O, (2.11) holds, become rather simple. Thus, it will be shown that

* (2.2) yields
However, by allowing infinite boolean algebras Q -(ia&(bvc)I(a&(bvc))v(b&c)) (2.16)

one can force a form of conditioning to be back in the so that
original boolean algebra (but not without complication) - p(a&(bVc))/p((a&(bvc))v(b&c)),(2.th)
as Copeland showed. (For a critique of Copeland's "im-
plicative" boolean algebras, see (7], section 1.8.) etc., differing considerably from that proposed by

2.3 Approach B: Identification of conditional events Approaches A (see (2.9)) or B.

as -MEargn-l ones with conmon joint antecedents For (2.3), one obtains

In this approach, one attempts to obtain a com- Q (ole) (2.18)
mon joint antecedent event for all of the conditional resulting in
events appearing and then identify each as a marginal resulti(2.1non t i v a c rp(Q) - p( a)IP(8) , 2 .9
one hc.vinc a corn joint antecedent. In turn, one where d
procedes to evaluate for a suitably chosen probability (atb&c&d) v (e&f) . (2.20)
measure analogous to that In (2.5). This is best shown 0 d
through an application to (2.3):

differing again considerably from both Approaches AFirst make the identifications and B (see (2.13)).

(alb) with (axdxflG)l d In all of the above computations, one need not
(cid) with bxcxflG) ;G , bxdxf. (2.12) construct joint probability measures and consider car-
e f with bxdxeIG)J tesian products of events, nor is the procedure ad hoc

Thtn (2.3) becomes (despite the oversimplified appeal of Approach A - but
Q&e srction4(9V).

Q =((axdxf G) & (bxexfjG)) v (bxdxelG) 3. OUTLINE OF A THEORY OF MEASURE-FREE CONDITIONAL

(((a&b x c&d x f) v(bxdxe))IG) , (2.13) EVENTS

resulting in the evaluation 3.1 Introduction.

p(Q) -PS(a&b x c&d x f) v (bxdxe) I) , (2.14) Following the basic motivation for the develop-
ment of a conditional event calculus for PL in section

which can be further reduced using the definition of 2, this section presents an overview of the basic re-
conditional probability and the standard calculus of sults. The following three questions are addressed:
operations for PL.'

(I) What meaning can be attached to a typicalHowever, the main drawback to th I s approach Is conditional event (alb), where a and b are ordinarythat initial probability measure p:R * (O1 must be unconditional events, prior to evaluating through a
replaced by some joint probability measure p over the specific evens p to e thr a
boolean (or sigma-) algebra spanned by R3 , where p
P(. b),p(..Jd),p(... Jf):R * (0,1] are conditional prob- p((alb)) - p(alb) - p(a&b)/p(b) ? (3.1)ability measures whose joint measure is poso that (i) How shall operations- in particular, the

p(alb)-p^(axdxfJG),p(cld),p^(bxcxfG),p(elf)=pbxdxe|) usual boolean ope-ations &,v,()' and relations such as
0 0 (2 .15) ; - be extended from unconditional events to condition-

But what choice of p to make? Should it be based on al ones and what properties do they possess?
maximal entropy cons~derations, etc.? Long calculations (ill) Can such operations and relations as in (ii)
can also result from the cartesian product forms.(For be characterized for uniqueness, etc. 4
A'rther discussion, see (7], sections 1.1, 1.5, and
IO.-A. However, for a tie-in with the approach presented For a history of previous attempts at develop-
in this paper, Theorem 4.1 9lven In section 4 i ot use.) ing a theory of measure-free conditioning, see (7),

2.4 The b.:ic prolm In representino conditional sections 1.8 and 1.9. Among the predecessors of this
events wtth distinct antecedeots. effort, Schay (9] was among the first to attempt such

a task, but used an ad hoc procedure in addressingAs siown in -oction 2.3 two of the most common question (ii), although a somewhat complicated charact-
approaches to the handling of conditional events do erization was developed relative to (ill). Later,
not lead to satisfactory results, from either a math- Calabrese, completely independent of Schay. produced
ematical vie ointas In Approach A,or an unambiguous also an algebra of conditional events and operations,
computationally efficient viewpointas in Approach B.
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the latter also from an ad hoc approach following ccrt- E R P(R). (3.15)

amn analogies with material implication [8]. where P(R) denotes the poer class, or class of all

3.2 Development of measure-free conditional events. subsets of elements , of R.

From now on. without further explanation, the Next, call any pair (f,s) dnot-necessaly
symbol R refers to an arbitrary fixed boolean algebra a priori a candidate class of conditional events)'
with'all of the usual' operations and relations explain- where f:R2.S is surjective (i.e., onto)-a probabi!ity-
ed previously (see section 1.2). The partial order c-patible pair with respec -in R iff. by definitioi,
: over R2 (corresponding to the subset relation v (J316)
among sets corresponding to events or propositions R R S • u SbbcR
as considered here) is defined as usual as where now Sb is some boolean algebra, for each bcR,

asb 1ff a - a&b iff b - avb, (3.2) and where for each probability measure p:R-(O,13 and
for any (unconditional) events a,b e R. Note also, 0 each bcR with p(b)>O, p can be extended to (using the
denotes the null event and A the universal (unity)event. same symbol) p:S-[0,l] such that for all acR,

Define fS) to be any sandidate ass of con-
ditional. events extending R iff.f is some function p(f(a,b)) - p(alb). (3.17)
f:R 2 * S for some space S,such that for all a b,c c
R, and boolean operations * over R: * ,etc. are oper- Theorem 3.2, ((7]. Theorems 2.52.9)
ations over (assumed ) boolean algebrk of events Let (f,s) be a probability-compatible pair

Sb 4 f(',b)(R) - range(f(-,b)) (3.3) with respect R. Then:
whereb

S , U Sb , (3.4) (1) (f,S) is also a-candioate class of conditional
b c R events extending R.

f(a.b)*bf(c,b) - f(aec,b), (3.5) (I) (nat,)" is a probability-compatible pair.

and (iii) By suitable restriction of f:R
2 

* S to non-
f(a,b) - f(a&b,b) , f(a,n) • a ( (3.6) triviali.e., non-zero or non-unity probability-valued

conditional event pairs, Iten 1 f becowes bijective
For any c#pdidate class (fs), one can interpret and in (3.13) can be replaced by a global isomor-
f(a,b) as a conditioned upon b wrt flor symbolically
as (alb)f. where a Is the consequent and b the ante- phism =- not dependent upon b, showing that the canon-
cedent. ical class of conditional events (nato) is the uni-

versally minimal (wct subclass inclusion) probability-
Theorem 3.1.((7], Theorem 2;J) compatible candidate class of conditional events ex-

(I) (nat,K) is a candidate class of conditional tending R.
events extending R, called the caLoat cl4se of I
conditional events extending R. where in (3.0 Next, a' basic 169ical justification for choos-

R 0 ((alb)nat: a c R 1 , (3.7) ing the canonical conditional events is given. First.
for any a,b c R, define the class of all a-relativewhere for each a,b e R, deducte of b as-

alb )  (ab)nt d (albI. * (1 (x: xcR and there exists rcR with rzb
1 ((x&b')v(a&b): xeR) (3.8) and x&r - a&r ) (3.18)

is the principal ideal coset (R&b' being the princi- (Calabrese (8], motivated by classical logic deduction,
pal ideal) generated by b' with residue a&b. making proposed this definition previously for conditioning
Rb a boolean quotient algebra with the usual coset a by b.)

operations ;b corresponding to ordinary boolean oper- Theorem 3.3, ((73, Theorem 1.3)

ations * over R (thus, * - &,v,()',etc.). For all a.b c R.

4 U Rb - ((alb): a,b € R) (3.9) 4alb , (alb). (3.)9)

bcR i.e., K coincides with the class of all relative de-
and for any ab c R. ductsl

nat(a,b) 1 (alb). (3.10) m

(ii) For each a,b c R. noting (aib) S R (alb) is
the inverse of the conjunction operation &b) :R-R at 3.3 Calculus of operations on conditional events.

a&b, i.e., With the role of the canonical class of conditr
(alb) - (y: ycR and y&b - a&b). (3.11) tonal events firmly established in section 3.2, consid-

Equivalently, (alb) is the largest subclass of R sat- er now the choice of operations upon them extending
isfying the relation the usual boolean operations acting upon unconditional

events. Throughout all of real analysis and topology,
(alb)&b - a&b (3.12) a universal way of extending a given "polnt"-valued

(III) For any candidate class (f,S) of conditional function to a "set"-valued one is simply through the
events extening R. and each bcR, natural extension or,equivalently, called the Iorwn-

ent-'ice cZass or image extension. In particular, let
sb(&bVb)) .f(.b) (boolean quot.lg.) g:R2 - R be any binary operation (boolean or otherwise)

Rb(b,),()k)(3.13) upon R (unary and more generally, n-ary operations can
-'( -be treated similarly), Then the natural extension (also

the symbol% denoting an isomorphism, so that In the denoted by the same symicl for g) from g over R2 to
above local ense for each b, the canonical class of g:p(R)2 - P(R), i.e., over P(R)Z,ls determined by,
conditional events Is the smallest possible candidate d
class of conditional events extending R. g(AB) z (g(ab): acA, bcB), (3.20)

for any A,8 S R ,i.e., A,B c P(R).

Note also that for any ab,c,d c R, Thus, recalling the comments in Theorem 3.1(li)

(alb) - (cid) iff a&b = c&d and b - d , (3.14) and (3.15), it is basic to inquire what forms the
natural extensions take for the ordinary 'oolean oper-

but unlike the classical case where b'd, (alb) is not ations relative to R when restricted to R. Note that
necessarily identical nor disjoint from (cid). (See for the binary operations &,v:R 2 - R , by their com-
(7]. Theorem 2.11. Note also the relations mutativity and associativity: they extend recursively
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and unimbigaousi'( to &,v:PO R. where, by convention,* -(a&b&c&dl(a'ab)v(c'&d)v(a&b&cd))(3.35)
for n-1, & - v -identity iunction.(The unary negation (a Ib)v(cld)-((a&b)v(c&d) I(a&b)v(c&d)v(b&d))
or complement operator-()':R. . R remains as is.,)
Denote the natural extensions of &,v,()' by the same -((a&b)v(cgd)I(a&b)v(c&d)v(a'&bW .&d)),
symbols. Thus, here the behavior of the natural eiten- (3.36)
sions of &,v:Re --R to the restrictions &,v:k - P(R) (aIb)-(ablb)-(b-9b)(L)&(b b)((b' )a)&(bib).
and that of ()':R + R to the restriction ()':R - P(R) (3.37)

Threm 3ogh. 7] iolrs .33) (alb)&b-ab ,(alb)vb-(blb). (3.38)
Thoe _.,-(7,__ blais3334 (alb)v(bla)-(a&bla&b), (alb)&(bla)'.(a&bjavb), (3.39)
Fo-any positive integer n and any aj~b4 c R,.abvcb)(abvcbIabvcb)(.0

(I he coemmon antecedent case. noting Rb s R. (alb)&(clb')-(eI(a',&b)v(c'&b')), (3.41)

alb)e, (a b b Ia Ib b)a' bj (3.21) (c d)+ (alb) -(c.,a (c'&d)v(a&b)v(b&d)), (3.42)
( aI 1b b(aj~b) * ('a lb( aj&blb), (3.22) (l)4ab(4abd,(.3

for -&,v. .1chaining:- (a&blc) -(ab&c)&(bc), (3.44)

Turelative to any given boolean quotient latblcld) -(=~ ~ )(~~)(~) (3,45)

responding natural ext nsions of the original opera-
tions relative to R coincide. It follows that if provided that 'n

g((a,1bi),...(a n b n )~a~l, (n lb,)) whr above~material implication and material double
iniplicatioA,as extended from R to Rkara defined formal-

(g(a i..'a n)(b). (3.23) ly the same as in 6he unconditional case:
0ii) Distinct antecedentsin general,case. (cid) + (alb) 1 (cld)'v(alb). (3.48)

n A n d
&(ajlbj) & ( ajr) S(&(aj&bj)Ir). (3.24) (cldI 4(alb) -((cld)-4(AIb))&((alb).9,(cld)13.49)
.11 J.]~ J.]

where dn n n n
r.& b V V(a'&b &(a9b) v v(a&b) Recalling the partial order s for R. (see (3.2)).
J.) J.) ii N ii define and extend this relation to R by letting, for

-and (3.25) all a,b,c~d c R. . -t

n n n(abs cd 'f(ab - ab&cd. (50

j.l j vaib. j) (.6 Theorem,3.7. ((7], Theorems 4.1,4.7)

where dnn n n For all i,b,c,d i R:
q v(a &b) v &b- v(a &b) v &(a')& (I) Characterization of S over iR

i-I .j- jl &aj (3.27) (alb) s (c~d) if (cid) - (alb)v(cld)

I If f(a&b):s (&d) and(boa) s(d~c)
Combining (3.24) and (3.26), leads to the fol- 1ff (a&bW-(c&d) and ,(c'&d):(a'&b)

lowing corollary: 1ff (cid)' s (alb)'. (3.51)
Corollary 3.1 (New result.)

10i s over A2 is not only a partial order (reflex-
Noting that any (compound) boolean function of Ive, transitive, anti-symetric), but also a meet j.)

multiple arguments can always be put Into an equival- and join(v) lattice with all of the usual operation-
ent form consisting of a disjunction of conjunctions, preser'ving, properties. Note the relation, compatible
let a14.b,, £ e -,.m,-,.n where some of these with (2. 10) and (3.8), showing that b~a and aib are

events may be e or A1 . Then the largest and smallest elements in (alb),.respect-
* n ively, relative to partial order

v & (ajbj 1 0 ) ~ (3.28%/ a&b s (alb) !s blia . (3.52)
wher (III) (&vO;)is a distributive lattice which Is
weedm n do(.9 oan algebraic semi-ring with zeoeeen n

io vJul 1 & 1 ) ~ 4' un'ity element a, and is, further, idempotent, absor' -
n= .J m ing, and demorgan, among other properties.

&~ v1-1 &b1)(.0 3.4 Justifications for ch~ice of "xtensions of
noting that a and y are disjoint, I.e.. prtosto~oK

& (3.31)In addition to the large number of desirable
a & Ys 0 (.31)properties for the naturally extended boolean opera-

so that for any probability measure P: - (0,1], tions upon 9 given In section 3.3, characterizations

pim n (j bj-pa8_c)/8_ll py/p,)tcan also be established.

I & I a~ j ji ~I)poI(~Il{()pa) Recalling the maximality property of b-3-a with
-~(3.32) respect to ab)((3.52)), define a corresponding

I mapping 4-K -R?, where for any a,b c R

Theorm 3.6. Some special cases (Q7]. section 4.2). 4((alb)) 4-b-a . (3.53)

For any a,b,c,da I~ c R. i1,.,:Theorem 3.8. ((7], Theorem 10.1, Remark 10.1)

(alfl)-a, 0aI.)-R, (O~b)-(b'1b)-R&b'*(x&b': xeR).(3.33) (I) *Is a surjective &,v-homomorphism with respect
(n~b-(b~)-Rb'-(vb':xcR, (334)to the natural extensions of &,v from R to R.

(alb&(cl)-(~b~cdl~a&b~~t'&~v~bd))(ii) Let g.;:R2 - R be any possible extensions of
(al)&(ld)(a~~c~I~ab~vc~dv~bd))&,v:Rz -~ R, respectively, such that there exist
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functions *,*2R - R, where for all a,b~c,d c R, p(al1b) ( , 3.66)
a&b v c&d S *2(a.b~c,d), at&c&d S *1(a,bc~d) for all probability measures p:R - (0,1], with p(b):,..

and -(3.54) From [7], sections 9.4, 9.5, 2.3, the following
(alb)&(cjd) (a&b&c&djp,(a,b,c,d)), (3.55) concepts and results hold, for any a~b,c,d c :(36)

(alb)v(cld) ((a&b)v(c& d)I 2 (a,b,c,d)), (3.56) (I i.. (alb) 1ff bsa 1ff bOa - I 1ff (alb)-(b~b),
noting the essential rccessity of consequences matching CPL
the corresponding ones for the natural extensions. (11 (alb) and J- (bja))iff~a-b iff a4+b -1

Then it follows that relative to 9, CPL CPL 1ff (alb)-(ala).(blb).(3.68)

i-&,;- v (3.57) (111) Define (cid) tautologically implies (alb) 1f

(III) Compatible with Theorems 2.2, 3.-32 there t-L((cjd)(ajb)). (.9
is no full (i.e. &,v,(P-)homomorphism p:R - R with (.9
res-rct to the natural extensions of g,v,()' from R Then H (Ccjd)-j(ajb)) iff b&c&d S a 1ff c&d s -9a

to CPL (3.70)

Theorem 3.9. Partial converse of Theorem 3.8. IV) Define (cid) tautologicallyi is equivalent to
([7),Theorem 10.2, Corollary 10.1, (alb) 1ff (.1
Remark 10.2) - h' ((cjd)"4ajb)). (.1

Let i,1:R . be any possible extensions of Then ( C PL)4(l) f ~ ab cd,(.2
tne corresponding coset operations TbbR 7 '_ sim- (j)"ab)Lfbds(g4cd.(.2

ultaneously an4 consistently for all b c R. (Hence, M( cjV)ab imle -(cd-(j). (.3
nccessarily , & ,v extend &,v relative to R.) (e)ab) ipesI.(CPLd.(b), 37)

Suppose also that 1,; obey not only cloture. (VI) (cld)-(alb) implies H- ((cjd)4+(ajb)). (3.74)
but are also comutative and associative over R with CPL
o and n playing the usual roles of zero and unity el- (VII) Sufficient conditions for modus ponens analogue:
ements. respectively. Suppose also there exists (cdsab an -cd) iles j(ab3.S

*1 R . such that for all a,b,c,d c R, CPLd5(jb CnP c~)ipie -(lb)(.

(al)&(ld) (a~~c~~v,(a~,C~)) (358)(VIII) Characterization of modus ponens analogue:

(alb);(cld) - ((a~b)v(c&d)1* 2 (a,b,c,d)), (3.59) ( icjd)- (a b)) and r (cjd) )

(alb)ib -afbt (3.60) CPL . PL (3.76)
and M R mle a. 36)I!(- (a&clb&d) and H- (ci1d) )

((alb) ic cR)Ipiscb(36)CPL CPL
Then (IX) H(ab 4cd)implies

(I) For all a~b,c,d c R, CPL (.7

(a'&b)v(c'gd)v(b&d) s 4,(~~~) (3.62) (H((ajb).*(cjd)) and H- ((cld).*o(al b))).
(abvcdvbd I(~~~) 36)CP. CPL

(ab~~cd~~bd) 2 abcd, (363(X) Next, define (cjd)8eenntica2Zy(or uniformnly in
showing that the natural extensions of &,v are maximal, probability) implies (alb), written (cid) -(dib).
i.e., (alb)i(cld) s (ajb)&(cjdl , (3.64) if ~ i ) s p a b ,CPL ( .8

(ajb) (cjd) (alb)v(cld). (3.65) for all probability measures p:R - 0,I] with p(b),
(ii) Result (I) shows that in contradistinction to p(d)>0.
the antecedent-only dependent operations o~f Schay (9) Also, define any (alb) to be a contradiction
and Calabrese (8), there are no boolean functions fo CPL, written -IL (alb) , 1ff for all probability

* 2as above,but now such that for all a,b,c,d e R, CPL
*j(a~b~c.d)'#,(b~d).only. J-l ,2,such that the corres- measures p:R - (0,1], with p(b)>0,

ponding operations & and satisfy the hypotheses of p(alb) -0. (3.79)
this theorem. It readily follows that

3.5 Additional Properties of j . (a Ib) iff a&b -0 iff H- (a b)W (3.80)

Finally, brief mention should be made of other C ith abtmr dif CL n a hw(.
pertinent properties of the conditional extension ofWihabtmrdficlyoncnsow(.1
a given boolean algebra of events. (cId) - (ai1b) I ff( - (ai1b) or 14 (ci1d) or (c ld):s(al1b))
(1) Stone's Representation Theorem -showing an CPL CPL CPL
order-preserving isomorphism always exists between aCal(b)ndcd sm tily(ouifry
given boolean algebra R of events or propositions (XI) Cl aIb n cd eztcl~ o nfr~~
and a corresponding boolean algebra of subsets of in probability) equivalent, vritten (cd) - (alb), 1ff

some set -can be extended quite readily to (7,p(alb) -p(cld). CL (3.82)Theorem 10.3).
(ui) The usual Iilbert-ckermann axioms Involving for all probability measures p:R -:(0,1) with p(b),
material irplication~relative to any R. wit.er. R is re- p(d)>0.
placed by 2, ordinary substitution, and a modified it follows that
form of modus ponens used to deduce theorems from pre- (cld) -(alb) i f f ( (ai1b) and H- (c 1d)) or
vious theorems and axioms, together with the natural CPL CPL. CPL
extensions of all boolean operations from R to K. (t..(alb) and 17,(cld)) or
?..nns a sound and cow:lete loic I.e., all theorems PL CPL
are tautologies and- vice-versa, CjljtM3i conditional
probability logic (CPL), extending ordinary probabili- (alb) =(cld)). (3.83)

tyb logi, (aLb). iSe a 7) Carollry rCL wie. ant (XII) Finally, mention can be made of a weaker form
1f, cR(abIsatuooyfrPwiten th alu of semantic implication by restricting probabilities

ifby definition, in the above definitions to subclasses or even to a
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single probability measure. and related ideas. (See, in particular, [7], sections

(iii) Another area of basic interest concerns higher 7 and 10.4.)

order conditioning. Thus,if beginning with unconditior. 4. PROBABILITY EVALUATIONS AND APPLICATIONS-
al events say a,bcd c R it is meaningful to consid-
er the conditional events (alb), (cId), then why should Following the brief overview of the role of
one not consider,in turnthe second order conditional data fusion in developing a generic model for typical
event ((alb)l(cld)) ? (This issue is addressed in (7], C3 processes in section 1 and the motivations and
section 5 in some detail.) Basically, the appropriate mathematical and computational structures for coadit-
definition for the above expression Is the formal high. tonal events, this section presents the fundamental
er order analogue of (3.11). Thus links for probability evaluation and application to

a c .(3.84) combining of evidence and data fusion.
((alb) (cd)) - ((xly) :(x Iy)cR,(x Jy)&(c ld)-(a lb)&( d))

One major result ([7], Theorem 5.5) concerns First note the following theorem

the class union mapping u:PCP(R)) - P(R), where for Theorem 4.1. ([7], Theorems 1.5. 7.1, Remark 1.3)
any ats P(R), d Let p:R - (0,1) be a given probability measure.

u(0) (x: xcAc( , for any AcG ).(3.85) Then:

Hoting that u is a surjective homomorphism relative to (1) With slightly additional conditions placed upon
all natural extensions of operations from P(R) to (nonWatomichtly theonl poi tns of p
FP(R)), not just boolean operations, and noting that to first p:Rtol , for each bcR, and then to

all boolean operations over Z (sP(R)) car. be extended t
to P() (_p(p(g))) in the natural sense, though unlike p: - (0,1), where p((alb)) is some fixed function
the first order case, R, closure problems arise for (not dependent upon any given ab c R) of p(a&b) and
the higher order case, the following reduction holds: p(b) such that p(( b):Rbo.[O,1] is a probability

u(((alb)l(ctd))) - (alb&((a'&d')v(c&d)) , (3.86) measure is

for all a,b,cd c R. In particular, p((alb)) - p(alb) - p(a&b)/p(b), (4.1)

u(((alb)lc) - u(((alb)I(clb))) - (ajb&c). (3.87) i.e., ordinary conditional p-obabllity muit be assign-
ed to conditional events.

Thus, through the above relations, in a sense, (it) The extension p: -[.10,] is monotone increasing,
one need never consider higher order conditioning. i.e., for 5ny a,b,c,d c R.

(iv) One can establish optimal approximations of (aib) 5 (cld) implies.p(alb) 1 p(cd). (4.2)
irbitrary subclasses of R through conditional events, uBy using the demrgan property amng others
s., if Aa R , the beat upper aroximation of A (set Theorem 3.7(111) and Corollary 3.1 ), all com-

: rotgh R satisfies the relation ((7], section 6) putations for pnrobatiill1es of (comnound) ttolear

A s cond(A) n ((alb): A S (alb) c R ) E R, (3.88) functions of conditional events can be reduced to com-
puting probabilities of only conjunctions of condition

noting trivially that for any (a b) c al events. With this in mindthe following result
(alb) = cond((alb)). (3.89) shows that the measure-free conditional event approach

presented here in conjunction with probability evalu-
The chief results include the 6ollowing (see ations can,in a sense,be identified with a modified

[7], Theorems 6.1,6.2, and Corollary 6.3): form of Approach 8 given in section 2.3, Ltith the
(I) If now R is a complete boolean algebra, then joint probability measure p , in effect, determined
for any A s R, through conditional event c~njunction and initial

cond(A) . (&(A)l&(A) v (v(A))') (c K). (3.90) probability measure p over R:

where Theorem 4.2 ( (7], section 10.4, issue (x))

&(A) ' &a , v(A) I va (3.91) Let p:R - (0,1 te a given probability measure,
acA acA let bd c R be arbitrary with p(b),p(d)>O. For each

are the(possibly non-finite)extended definitions of s~t c X, consider the infinite left rays

A and v due to the completeness of R. a s I (--,s] , ct 9 (--,t] . (4.3)

(II) Let R -s, the class of all borel subsets of Then, p((aslb)&(ctld)),as a function of (s,t),
x, the real (or one-dimensional euclidean) line. Let

z be any functio. denote the natural extension is a legitimate cumulative probability distrihution
of to P(x) restricted to A (sP(x)) as simply function over 2 with p((as jb) (dd)).as a function of
g:.- S (assuming g is sufficiently measurable). In and p((ctld)&(blb)), as a function of t, being
turn, denote the natural extension to P(S) restricted t
to B, the conditional extension of s, as simply marginal cumulative probability distribution functions-M over x.
g:b P(s).Then for all (borel sets) a , b £ S. with o
aI s bl, I l,,,m, noting as ordinary letl,s replaces

S, n replaces &, u replaces v, etc., BASIC PRLEFPLES FOP EVALU"

cond(g((altbl)....(amlbm)))- (oB), (3.92) A T I H B PROBAB I L I T I E S 0 F

d a I g(aI ....a m), (3.93) COHDITIONED INFORRATIO0!
d (g(bl-)a, ... m 4 a m) W (3.94)

whe're here biai b- b'u a1If g is co mutative and associative then ( iS (). Determine whether or not the evidence has truly
f 5 Idiffering antecedents.

cond(g):; - i -• If the antecedents of the information are identical

The above development is particularly useful in then apply the usual calculus of relations for PL. For

determining the optimal approximations for naturally example, suppose the same source, sensor or human, on
extended arithmetic operations, since these, unlike two different occasions produces an estimate of target
the boolean operaticns, In general do not possess location And it Is desired to obtain the probability
closure properties over D. These results lead, in se- of the disjunction, sincc if the resulting probability
quence, to the development of random conditional events is sufficiently low, no further investigation will be
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carried out. If the source error, though possibly in- it follows that Theorem 4.3 can be converted Immedi-
dependent, is~relatively small, then both target est- ately to bounds on information uncertainty.
imates can be considered unconditioned information.
Or, perhaps, by sheer coincidence, the same error Ideally, what is sought is the conditional
causing mechanism is present and behaves-le same way event calculus -as developed here- analogue of Hail-
in producing the two estimates, which themselves can Perin's results (12] concerning the bounding of prob-
differ greatly in terms of. random behavior .nk Frob- ability values (and hence, correspondingly, informa-
ability characteristics. Or, further, where Approach tion uncertainty) for arbitrary boolean functions of
B is valid: the actual joint probabilities of the unconditional events when probability bounds are
source random mechanism are known, one can then re- known for the individual (unconditional) events. How-
duce all computations to that involving only PL, be- ever, at this point, one must be content with the
cause of the common joint antecedent, rather simple results given in Theorem 4.3, until fur-

ther'results are obtained in this area. These proper-
(A But, in general, as in the simplified examples ties also tie-in with CPL and the weakened forms of
In section 2.1, the antecedents of arriving condition- implication mentioned in section 3.5(ii)(XII), More
ed information arise from widely varying sources, of details of this will be presented in future work.
which little or nothing is known concerning Joint
probability distributions, yet relatively much is Generalizing the situation described In steps
known concerning the indiidual (consequent) event End (4), one can have events of interest abc ,d.,

probabilities. t. * (null event), nI (universal event) 1l1lbelon -
in t6 boolean algebra of events R corresponding to

01) Isolate all the relative unconditional events common probability measure p :R4-O,l], for I1,2,
a,b,c,d,e,f,.. making up the forms of the individual say. But, by making the usual marginal identifications
conditidnal probabilities P~alb). pcld), qelf),.. a1Ia 1X02 , bIblxn 2 #... a2- 1xa2 ,b 2.0lxb2 ... and assum-
61 Temporarily ignoring the probabilities, deter- ing that the joint probability measure p of p, and

mine just what compound boolean operation is desired. P2 Is known, noting that because of '41',
Perhaps one simply is seeking to obtain, in some way, p k n t b
the"joint" probability of (alb), (cid), (elf),i.e, Pl(allbl),Po(alx"2 bl-x02 ) ... (4.7)

in actuality, the probability of the conjunction
(alb)&(cld)&(elf) , or any other combination as in P2(a2lb2)Po(nla 2Ib2xn) ..... (4,8)
the examples previously mentioned. Carry out the
measure-free computations, based upon the boolean it follows that all of the previous steps are now val-
function desired, in accordance with the calculus of id for the situation here with p replacing p, and the

conditional event operations as given in section 3.1 marginal identifications for the events.

mot-. that ry such operation reducesthe collection 00 Higher order conditioning, i.e., when the
of, possibly many,conditional events to a snqli con- events in the above steps such as a,b,c,... are in
ditional event, say (%lO), where now mj are known actuality id calditioned form already (which may well
booTea'-functions of tFe input events a,b,cAef.., be a common situation), can be treated in a strai ht-

Approxiatebya single probability measure p. forward way by use of the results in section 3.S11).
say, In place of all the iIfferently arising probabil- 01). Finally, it should be remarked that for non-
ities in step 4, so that, in a consistent sense, stochastic information, such as that containing ling-

p(a&b)-p (a&b), p(c&d),p (c&d). p(e&f)-P 3(e&f), uistic-based evidence, as considered, e.g., in 1 1],
1 "" an analogous calculus of conditional forms can be de-

Obviously, if the very same event, say b is assigned veloped, based upon (3.11) and the natural extensions
two distinct probabilities from two sources, say of ,perations [13]. The corresponding full ALDP's
p (b) and p (b), some concensus must be determined should prove of use in treating combination of evi-
b~fore a figal ccmmon assignment- by perhans use of dence problems and data fusion in general.
least squares, maxitrum likelihood, or mxmial entropy
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